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In this paper we introduce a new integration technique to find radially symmetric solutions 
of nonlinear wave equations, defined on a spherical domain with Dirichlet boundary con- 
ditions, and we use this technique to study orbital stability of the standing waves. We prove 
analytically that the wave of lowest energy is stable, and we show by numerical computations 
that the standing waves of higher energy are unstable. 0 1987 Academic Press, Inc. 

INTRODUCTION 

In this paper we introduce a new integration technique to approximate radially 
symmetric solutions of nonlinear wave equations. Our numerical scheme is a 
moditication of the collocation method (see [6]) which is commonly used for 
numerical integration of hyperbolic equations. 

The standard spectral method uses Legendre polynomials or Tchebysheff 
polynomials to obtain the collocation points and the collocation basis. However, 
the weak part of this method is that the collocation points are not equidistant and 
often do not provide the desired information about the approximated solution in 
specific intervals. Attempts to find a basis which provides equidistant distribution of 
collocation points have failed so far. Also, because of the form of the matrices 
involved, the standard collocation method requires a considerable amount of 
computations. 

We propose to use the zeroth Bessel function J,(& r), j= l,..., m, 0 <r < 1, 

where fi is the jth zero of Jo for all j as an approximation basis, and 

as collocation points. Surprisingly, these points are almost uniformly distributed 
with an approximate distance of 0.02 units between them. 

In the radially symmetric case J,(& r), j = l,..., m, are the eigenfunctions of the 
Laplace operator. Thus, in this basis the Laplace operator can be approximated by 
a diagonal matrix. Moreover, the transformation matrix between the spectral space 
and the physical space is symmetric. This reduces, to some degree, the amount of 
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work required. Because of the relation between the zeroth and the first essel 
function the gradient of the solution is easily computed. 

All this suggests that it is very natural to use our technique to approxi 
radially symmetric solutions of nonlinear wave equations with Dirichlet bou 
conditions. In particular, the boundary conditions are automatically satisfied. 

In this paper we apply this technique to study orbital stability of standing waves, 
which in itself is a very important and interesting question in mathematical physics. 

We consider the nonlinear wave equation 

u,,-du+f(u)=O 

defined on a smoothly bounded domain D c R” with the Dirichlet boundary 
condition 

The standing waves are solutions of the form 

u( t, x) = eLotcp(x) 

where CJJ is a real valued function satisfying the elliptic equation 

-Au-co2u+f(u)=0 

on D with the Dirichlet boundary condition 

By orbital stability of a standing wave ezwfq(x) we mean the stability of the set 

The ground states are the standing waves of lowest energy. In this case +J is 
positive (see [3]). Standing waves for which the energy is not minimal are called 
bound states. In this case cp is called a higher mode. 

It has been shown in [7] that for any given integer k > 0 there exist exactly two 
real valued solutions of the elliptic problem with k zeros, namely q and -9. In the 
following we will discuss only those solutions 40 satisfying the conditions q(O) > 0. 
It is also known that if D is a unit ball in R”, then the positive solution of the 
elliptic problem is radially symmetric [4]. 

Stability properties of the ground state of various problems have been studied by 
many authors (see, for example, [ 1, 2, 5,9-l 1 ] ). For o = 0 a blow-up theorem for 
the ground state of a special class of nonlinear wave equation on a boun 
domain has been given by Payne and Sattinger [S] and for higher modes by this 
author [ 121. However, for o # 0 the stability properties of standing waves for non- 
linear wave equations on a bounded domain remained an open question. 
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In [ 111 Shatah and Strauss were able to show that for the Klein-Gordon 
equation with a very general nonlinearity the ground states are stable for some o 
and unstable for other o. On a bounded domain the situation is different. In this 
paper we prove the following general theorem: 

THEOREM. The ground state of the given equation is orbitally stable for all o # 0 
and a very general nonlinearity. 

This result was used to test our algorithm. The numerical computations agreed 
with the theorem. It also turned out that our scheme provides good accuracy even 
for a relatively small number of collocation points, the invariants of the given 
equation are conserved, and the convergence is fast. 

For bound states our technique has shown that in the two-dimensional case the 
bound state eiw’cp(x) of the given wave equation with a cubic nonlinearity is 
orbitally unstable, if cp is the radially symmetric solution of the elliptic equation 
with one zero. This result has also been obtained for the bound state, induced by 
the radially symmetric solution of the elliptic equation with two zeros. It seems that 
this result is also true for cp with any number of zeros and for more general non- 
linearities. 

It is also worthwhile to observe the behavior of the energy in time on different 
parts of the space, and the energy exchange between these parts of the space. It is 
expected that in case of an unbounded domain the energy will decay at infinity. Our 
computations show that on a bounded domain the picture is different. Such 
behavior of the energy seems to be characteristic for these types of boundary value 
problems. 

Throughout this paper we employ the following notation: /I /j is the norm in 
HA(D) defined by 

liull’=[D lVu12 dx, 

// Ily is the usual norm in Ly(D); by - we denote weak convergence and by +, 
strong convergence. 

The author would like to thank Professors Walter Strauss, David Gottlieb, 
Jack Hale, and George Majda for their helpful suggestions. 

1. PRELIMINARIES 

Consider the nonlinear wave equation 

u,,-du+f(Iul)u=O 

on a smoothly bounded domain D c R” with the Dirichlet boundary condition 

ul,,=O. 

(1) 
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The standing waves of this equation are solutions of the form 

u(t, x) = ezwrq(x), 

where 9 satisfies the elliptic equation 

-Au-02u+f(Iu()u=0 

on D with the boundary condition 
UIBD = 0. 

Throughout this paper we make the following assumptions: 

(i) f~ C’(R, RI; 
(ii) f(z) 2 0 for all z 3 0; 
(iii) G(z) = 1; yf( y) dy; 
(iv) ~(z)=Q([z~“~~) for large z and 2<q<2n/(n-2). 

For example, f(jul) = /u12. 
Consider the functionals E and Q on HA(D) x L2(D), describing energy and 

charge: 

E(u,v)=;J 
D 

lv12dx+;J IVul’dx+~DG(lul)dx 
D 

and 

Q(u, v) = Im ID VU dx. 

They are invariant under the flow of (1) (see [ 131). 
Consider the set 

M, = { (24, v) E H;(D) x L’(D) I Q(u, v) = c}, 

for c > 0, endowed with the subset topology. Certainly, M, is a Finsler subman~~o~d 
of H;(D) x L2(D) of codimension 1. 

The following proposition states some of the properties of M, E, and Q. 

hOPOSITION 1.1. The following statements hold for all c > 0: 

(i) M, is bounded away from zero. 

(ii) There exists a constant K> 0 such that E(u, u) > K for all (u, u) E 44,. 

(iii) Zf (IA, v) E M,, is a critical point of E] M,, then there exists an o G 
that c = icou and u is a solution of (2). Zf u is a solution of (2) for some w > 0, lhen 
(u, iwu) is a critical point of El ,,,,, for c = w ID lu12 dx. 

(iv) Q is compact. 
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Proof (i) Let (u, u) E M, be arbitary. Then, using Schwartz’s inequality and 
Sobolev’s imbedding theorem, we obtain that 

c=Im jD~tidx~~jDaudx~G(jD,u,‘dx)1’z(jD,u,2dx)1’2 

<K(jD ,u,‘dx)1’2(jD ,vu,2dx)1’2, 

where K> 0 is the Sobolev constant. Therefore (u, V) # 0 and 

(ii) Using part (i) we obtain that 

E(w)+ j 
D 
Ic12dx+; jD Ivul’d+ 

for all UEM,. 
(iii) If (u, u) E M, is a critical point of El M,, then there exists a Lagrange 

multiplier o E R such that 

E'(u, II) = wQ'(u, v), 

Substituting u = iou into the above equation, we obtain that u is a nontrivial 
solution of (2). The last part of the statement is obvious. 

(iv) Let {(a,, uI)} be a bounded sequence in HA(D) x L2(D). Then there exists 
a subsequence of {u,> and a subsequence of {Ok), which we denote in the same way, 
such that u, - u in HA(B) and v, -u in L2(D). Since the imbedding HA(D) 4 L’(D) 
is compact, it follows that u, + u strongly in L2(D). The definition of weak con- 
vergence implies that 

s u$-i, dx + s 
VU dx, 

D D 

and therefore, Q(u, v) = lim, _ co Q(u,, 0,). 

This completes the proof of the proposition. 

2. EXISTENCE OF A STABLE STANDING WAVE 

In this section we obtain the ground state of EIMC using variational methods (see, 
for example, [3]), and we show that the corresponding standing wave is orbitally 
stable. 
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PROPOSITION 2.1. For any c >O there exists a nontrivial solution cp of (2) such 
that 

where co = c/SD I cp / ’ dx. 

Proof. Let ( ( uk, ok)} be a minimizing sequence in M,, i.e., (uk, vkj E 
H;(D) x L2(D), Q(u k, v,)=c for all ksN and 

Since {(u,, uk)) is a bounded sequence in HA(D) x L2(D), we can extract weakly 
convergent subsequences of { uk} and {vk}, which we denote by the same symbol. 
So, let uk - cp in HA(D), and vk - $ in L2(D). Since the imbedding HA(D) 4 L4( 
is compact, it follows that uk + q strongly in L4(D) and, using assumption (iv), we 
obtain that 

lim j G(lu,lW~=j G(/cpl)dx. 
k+m D D 

This and lower semicontinuity of weak limits imply that 

On the other hand, the compactness of Q implies that 

i.e., (cp, $1 E M,. 
Therefore, 

and ((Us, uk)} converges strongly to (p, Ic/) in HA(D) x L’(D). 
Proposition 1.1 implies that $ = loop and o = c/ID jq12 dx. This completes the 

proof. 

The set of all the solutions of the minimization problem (3) is of the form 

S= {eieqIt3ER): 

otherwise (1~1, iolcp,l) would have a lower energy than (cp, imp). 
Thus, in order to prove orbital stability of the standing wave e”“cp(x) we have to 
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prove stability of the set S with respect to the flow of (1). This leads to the 
following theorem. 

THEOREM 2.2. For any E > 0 there exists a constant 6 > 0 such that, if 

Ilu(O) - dl H;(D) + II%(O) - iWllL2(D) < 6 

then 

for all t E R, and all solutions u of Eq. (1). 

ProoJ: Assume the contrary. Then there exists an E > 0, a sequence 
{(uV), u{(O))} in fJ@) x L2(o), and a sequence (t,} in R such that 

((u’(O), u:(O))1 -+ (9, imcp) 

in HA(D) x L2(D) as j + co, and 

lI~“~t,)-wf~(D)+ Ilu:(t,)--io~//.z(,,‘& 

for all Ic/ E S and j big enough. 
Since energy and charge are conserved under the flow of (1 ), it follows that 

E(u’(t,), dt,)) -+ E(R imcp) 

and 

as j-+ao. 
This implies that (z&( t,)} . IS a bounded sequence in HA(D) and, therefore, it 

contains a subsequence, denoted in the same way, which converges weakly to a 
function II/ in HA(D). Since the imbedding H;(D) 4 LY(D) is compact, it follows that 
(d(t,)} converges strongly to $ in Lq(D) and 

lim 1 G(luj(t,)l) dx=ID G((+I)dx. 
i-00 D 

For the same reason there exists a sequence (u{(t,)} which converges weakly to a 
function IJ in L’(D). 

The compactness of Q implies that Q($, $) = c, i.e., ($, 5) E M,. Moreover, by 
lower semicontinuity of weak limits we obtain that 

E($, $1 d lim inf E(uJ( t,), u:( t,)) = E( cp, imp), 
I+00 
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and therefore, E($, $) = E(cp, iocp). Thus ($, 3) ES and (~j(t/), uj(tJj converges 
strongly to ($, 3). This contradicts the assumption. 

3. EXISTENCE OF UNSTABLE STANDING WAVES 
AND THEIR NUMERICAL APPROXIMATION 

In this section we study radially symmetric solutions of the boundary value 
problem 

u,, - Au + 1u12 u = 0 

with the Dirichlet boundary condition 

where D is the unit disk in R”. 
For the radially symmetric case the boundary value problem (4) can be written 

in the form 

for 0 < r < 1 with the boundary conditions 

u,(O) = 0, u(l)=O. 

In this notation the standing waves are solutions of Eq. (5) of the form u(t, vf = 
d”‘q(r), where 40 satisfies the elliptic equation 

-Ur, -+02u+ lu,2u==o, O<r<l, (6) 

with the boundary conditions 
u,(O) = 0, u(l)=O. 

First we outline an integration technique for the boundary value problem (5) 
which uses the collocation approximation (see [6-J). This method is based on the 
following. 

We choose a number of collocation points rl,..., r,,, on the interval (0, l), an 
basis (Gjl,..., @,J in the approximation space B such that the matrix 
(@z(rj)}i,J= r,.. ,m is nonsingular. We define then the projection operator from ~~(~) 
into B by 

h(r)= f blcDj(r), 
I=1 
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where bi are solutions of the linear equation 

f bj@J(r,) = u(r,), i= l,..., m. 
j=l 

Thus, at the collocation points we obtain that 

Pu(r,) = U(li). 

Since the zeroth Bessel function .I,-,(& ) r is the solution of the eigenvalue 
problem 

u,,+~u,+lu=0 
r 

with the boundary conditions 

%(O) = 0, u(l)=O, 

it seems natural to choose 

CJo(J;i; ~)Y..~ JoCdL r)) 

as an approximation basis, and 

A,.,., i&L 
JIIzm+rJ;zm+l 

as collocation points, where h is the jth zero of JO for all j. 

75 - 

50- 

25- 

oo- 

-2.5 - 

0 02 04 06 08 I 

FIG. 1. Initial data versus space variable. The dots are the collocation points. 
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For m = 49 the collocation points are almost equidistant, with an approximate 
distance of 0.02 units between them. 

In Fig. 1 we can see the uniform distribution of the collocation points in the 
interval (0, 1) for m = 9. For this basis we obtain that 

-du(ri) = - u,,(ri) -$ zf,(ri) = f 0,1.:,J,(fi r,) 
J=1 

Vu(r,) = u,.(r,) = - f b, fi J,(& r,), 

/=l 

where J, is the first Bessel function, and r, = ,,k,/&, i= I,..., m. 
Let M = diag(A, ,..., A,), let 

J= 

r,) ... Jd& rm 1 

let U= (u(rI),..., u(r,)), and let b = (b 1 ,..., b,). In this notation U= Jb, 
JMJ- ‘u, and we obtain the integration scheme for Eq. (5), 

or, equivalently, 
u kt1=4A~k-2~k-~k---Ah2JukI’uk, 

where 

A = Z+T JMJ-’ 
[ 

AU= 

(7) 

h is the step size, and Z is the identity matrix. 
In the previous section we showed that the ground state is stable. Let us use this 

result to test our algorithm. In order to obtain the positive solution of (6), we 
integrate first the equation 

u”+L~+v-,z,2v=o 18) 
X 

with the initial conditions 

for some a > 0. 

u(0) = a, v’(0) = 0 
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TABLE I 

Time Energy Charge 

0.02 564.58 78.02 
0.1 564.64 78.01 
0.2 564.75 78.02 
0.4 564.55 78.02 
0.8 563.94 78.02 
4.02 564.34 18.02 
4.5 565.47 78.02 
4.15 564.55 78.02 

Let v be a solution of (8), and let o be its first zero. Then cp(r)=ov(ox) is the 
positive solution of (6). 

Let us choose the initial data (u,,, ur) close to (q, ioq), and let us denote the 
computed solution of (5) by u(t, r). Since u(t, r) is complex valued, it has the 
representation 

u(t, r) = lu(t, r)l erm(t,rJ 

for some real valued function 6,. 
Our computation showed that, in the discrete sense, G(t, r) z ot and ju(t, r)l z q 

at all collocation points r and for all t in the interval of observation [0, T]. This 
implies that u(t, r) z q(r) erot and 

FIG. 2. The HA(D)-norm of the computed solution vs time. The solid line denotes the solution with 
the initial data u0 = l.OOlq, u1 = (l/1.001) ea020’cp. The dashed line denotes the solution with the initial 
data u0 = l.ooo’lq, u1 = (1.0001) e”.Ozo’q, o = 8.183884. However, lirpll = 1.515. 
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FIG. 3. Energy versus time for 0 < x < 0.357 (first interval). 

Our computation also showed that by choosing the initial data closer to (cp; iwq ) 
we can make E smaller. This implies the stability of the ground state which agrees 
with Theorem 2.2. 

Now our goal is to apply this scheme and to give numerical evidence for the 
instability of the bound state, induced by the solution of (6) with one zero. 

Let 21 be a solution of (8) with v(0) = 9.8 and let w be its second zero. Then, 
cp(r)=ov(ox) is a solution of (6) with one zero (see Fig. 1). So, we start with the 
initial data (uO, ui) close to (q, eiWhq), where o = 8.183884 and q is the solution of 
(6) with one zero. 

The scheme (7) conserves energy and charge, which are the invariants of problem 
(4) (see Table I). Also, the same accuracy has been achieved for m = 49 and m = 9. 

Comparing the HA(D)-norms of cp and the computed solution, we obtain that 

for small E. Therefore, 

I Ilu(t - llcpllx~cD,l ‘E 

ll4t) - eLwfvIl H;(D) > E 

FIG. 4. Energy versus time for 0.357 <x < 0.658 [second interval), 
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0 05 I 15 2 25 3 35 4 

FIG. 5. Energy versus time for 0.658 <x < 1 (third interval). 

for all t E R. This result holds even if we choose the initial data very close to 
(cp, i~cp) (see Fig. 2). Thus, the corresponding standing wave is unstable. 

Since the minimum of the energy is not achieved at cp, the solution has some 
excess energy. Let us divide the interval [0, l] into three parts, and let us discuss 
the changes of the energy in time on each of these intervals. Although the energy is 
conserved on [0, 11, this is not the case on each interval. 

Figures 3-5 show that initially the energy is equally concentrated in the first and 
the third intervals, and is minimal in the second one. In time, the excess energy 
from the first and the third intervals moves into the second one, and then back, but 
mostly into the first interval; after some interaction, it moves back into the second. 
The second interval always retains some of the energy; the maximal energy level in 
the first interval exceeds its initial value, while the energy level in the third interval 
drops much lower than it was initially. This process continues until the energy in 
each interval reaches its initial level. 

This inelastic behavior of the energy and the interaction of the energy seem to be 
characteristic phenomena for nonlinear wave equations on a bounded domain. 
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